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Abstract

Equations are derived to calculate the monomer addition programs for semi-batch copolymerization reactions that allow to prepare gradient
copolymers and block gradient copolymers containing arbitrary, pre-defined compositional gradients along the polymer chain. An analytical
solution is given for the special case of ideal random copolymerizations, and numerical calculations are applied to discuss non-ideal situations.
Three classes of addition programs are proposed and discussed with respect to time efficiency. Time-linear addition programs are shown to be
insufficient to generate perfectly constant gradients over the whole compositional regions.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Linear block copolymers are made from polymer chains of
different chemical compositions that are covalently joined via
their respective end groups [1]. The classical architecture of
block copolymers implies an abrupt change in composition
at the connection point of the adjacent blocks. During the
last decade a new type of copolymer came to the focus of sci-
entific interest with its chemical composition varying continu-
ously along a certain section of the polymer chain [2,3].

It has early been predicted that the thermal properties as
well as the bulk structures of such ‘‘gradient’’ copolymers
should deviate from that of statistical- or diblock copolymers
[4]. Gradient copolymers were calculated to undergo micro-
phase separation like block copolymers and should form
lamellar structures in the symmetric case, but the interface re-
gion between the chemically different regions will be blurred.
Gradient copolymers may offer a large degree of control
over the AeB interfacial profile [5] and their microphase
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segregation should depend on the actual shape of the gradient
[5,6]. Experimental investigations showed gradient copoly-
mers to exhibit two separate glass transitions [7,8] and very
broad relaxation time distributions [7,9] indicating the pres-
ence of the expected phase segregated structures. The pre-
paration of brush-type gradient copolymers composed of
a (meth)acrylate backbone and a gradient distribution of poly-
dimethylsiloxane side chains allowed to visualize the gradient
structure by means of scanning force microscopy [10,11]. The
Young’s modulus of these gradient copolymers was close to
that of the random copolymer of comparable composition,
however, the gradient copolymer was more tougher than the
random copolymer [9].

Micelle formation is observed with block copolymers in
solvents that selectively dissolve one of the blocks [12]. Up
until now the number of investigations on the gradient copol-
ymer solution structures is limited. However, ethoxymethyl
vinyl ether/methoxymethyl vinyl ether gradient copolymers
were shown to form micelles in water with a broad tem-
perature region separating the micellar- and the non-micellar
regions. Furthermore, a continuous transition between the
molecular dispersed and the micellar state was observed on
heating, where the micellar diameter decreased with ongoing
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micellization. The observation was explained by a ‘‘reel-in’’ of
the gradient-corona chains caused by the diffuse interface
between the micellar corona and the solution environment
[13]. An overview on the physical properties of gradient
copolymers can be found in Ref. [14].

For the preparation of gradient copolymers all polymeriza-
tion techniques can be applied that do not include termination
reactions. It has been reported that anionic polymerizations
[15], ring-opening metathesis polymerizations (ROMP) [16]
and controlled radical polymerization techniques like ATRP
[2,3,14] or nitroxide-initiated polymerizations [8,17] can be
used to generate gradient polymers.

Two experimental approaches have been distinguished to
control the compositional gradient, namely the ‘‘spontaneous’’-
and the ‘‘forced’’-gradient methods. Spontaneous gradient
polymerizations are batch-copolymerization reactions where
a monomer mixture is polymerized to high conversions [14].
In the absence of either azeotropic points or ideal random co-
polymerizations the monomer composition will change gradu-
ally with the monomer conversion because of the different
reactivities of the monomers. As determined by Skeist’s equa-
tion [18] a compositional gradient evolves along the polymer
chain. This technique is quite simple, but suffers from three
drawbacks: it is only applicable to strictly non-random copoly-
merization systems and will fail in close vicinity to azeotropic
points; it cannot be used to cross the full compositional space
from F1¼ 0 to F1¼ 1 and it is virtually impossible to generate
constant compositional gradients over the full range of mono-
mer composition.

‘‘Forced’’-gradient copolymerizations are semi-batch reac-
tions involving the initiation of a polymerization in a pure
monomer or a monomer mixture and the subsequent continu-
ous addition of a second monomer e or a monomer mixture e
during the reaction time. The addition rate as well as the
composition of the added mixture may be varied to allow
for full control on the composition of the generated copoly-
mer chain. Block copolymers of the structure P½M1 n-b-�
P½M1-grad-M2 Xe

-b-P M2 m�½� containing constant composi-
tional gradients with composition ranges within the gradient
block from F1¼ 1 to F1¼ 0 (see Scheme 1) can only be pre-
pared by means of forced gradient techniques.

Successful experimental attempts have been reported to
create gradient copolymers by continuous addition of mono-
mers at constant addition rate, (e.g. Refs. [3,8,19]), but no sys-
tematic presentation has been published as to how to calculate
the required polymerization/monomer addition programs.

For free radical copolymerizations an extensive amount of
literature dealing with the control of copolymer compositions
with batch-, semi-batch or continuous reactor systems still ex-
ists (for review see Ref. [20]). Since with free radical polymer-
izations the life time of the polymerizing species (1�2 s) is
negligible against the total time of polymerization (whours)
any variation in monomer composition will yield physical
mixtures of copolymer molecules that differ in composition.
For this reason it is the main goal of free radical composition
control to avoid any change of monomer- and copolymer com-
position during the course of the reaction. On the other hand
controlled or living polymerizations lack termination reac-
tions, hence it is possible to transform a change in monomer
composition into a variation of copolymer composition along
the polymer chain. This opportunity is not yet well represented
in the copolymerization control literature.

In the present work a systematic technique is proposed to
prepare arbitrary courses of the compositional gradient along
the polymer chain. Equations are derived that allow preparing
gradient polymers and gradient block copolymers containing
pre-defined gradient block structures.

2. Result and discussion

Consider the task to prepare a triblock copolymer of the
general structure P½M1 XA

-b-P½M1-grad-M2 Xe
-b-�� P½M2 XB

� , con-
sisting of a start block of monomer 1 and an end block of mono-
mer 2 that are connected by a gradient block P½M1-grad-M2 Xe

� .
The degree of polymerization of the three blocks shall be XA, Xe

and XB, respectively. Along the gradient block the polymer
composition should continuously change from F1¼ 1 at the start
of this block down to F1¼ 0 at its very end. It is of particular
interest that the molar fraction of monomer 1 along the gradient
block decreases linearly from F1¼ 1 at the start of the gradient
block (X¼ 0) to F1¼ 0 at its end (X¼ Xe). The value of the
linear gradient F¼ dF1/dX is then determined by the condition
F¼ (0 � 1)/Xe¼�1/Xe.

To prepare this triblock copolymer it is necessary to apply
a controlled polymerization technique to generate a start block
P½M1 Xa

� . Subsequently, nI moles of this molecule are used as
initiators to start the polymerization of n10 moles of monomer
1. During this polymerization step monomer 2 is added to the
reaction mixture in such a way that the demanded copolymer
compositional gradient F evolves, while monomer 1 is com-
pletely consumed. Subsequently, the excess of monomer 2 is
allowed to grow on the gradient block to form the P½M2 Xb

�
moiety.

To achieve control over the change of the copolymers’ com-
position F1 along the polymer chain an expression for the
value F¼ dF1/dX must be derived. As expressed by Eq. (1),
dF1/dX is related to the change of the copolymer composition

Scheme 1. Schematic depiction of the composition of a P½M1 n-b-�
P½M1-grad-M2 Xe

-b-P½M2 m�� gradient triblock copolymer.
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with the change of the comonomer mixture composition (dF1/
df1), the change of the comonomer composition with the
change of monomer conversion (df1/dp) as well as the change
of the monomer conversion with the degree of polymerization
(dp/dX ).

dF1

dX
¼ dF1

df1

df1

dp

dp

dX
ð1Þ

F1¼ copolymer composition at the degree of polymerization
X, f1¼monomer composition at the monomer conversion p.

The term dF1/df1 is easily obtainable from the copolymer-
ization equation, but to find expressions for df1/dp and dp/dX
the stoichiometry of the system under investigation must be
considered (cf. Scheme 1). In the general case n10 moles of
monomer 1, n20 moles of monomer 2 and nI moles of the ini-
tiator are present at the start of the reaction. At an arbitrary
value of the monomer conversion p ˛ [0,1], n1p and n2p moles
of the monomers have been consumed and became part of the
copolymer. Up until this point the amounts nadd

1 and nadd
2 moles

of monomers 1 and 2 were added to the reaction mixture,
hence the solution contains ni ¼ ni0 þ nadd

i � nip moles of
monomer i. At the end of the experiment the amount nadd

e ¼
nadd

1e þ nadd
2e moles of monomer were added, hence the reaction

vessel contains in total nin
e ¼ n0 þ nadd

e moles of monomer
units in the form of copolymer (see Scheme 2).

The monomer conversion p is defined as the number of
polymerized monomer moles, np, divided by the total amount
of monomer units introduced in the reaction system until the
end of the reaction, nin

e ¼ n0 þ nadd
e (Eq. (2)).

p¼ np

n0þ nadd
e

ð2Þ

X ¼ np

nI

¼ nin
e

nI

p¼ Xe$p ð3Þ

np¼ number of polymerized moles of monomer (¼ n1pþ n2p),
n0¼ number of moles of monomer present at the start of the
reaction (¼ n10þ n20), nadd

e ¼ total amount of monomer added
to the reaction mixture from the start ( p¼ 0) until the end of
the reaction ( p¼ 1), nin¼ n0þ nadd, nin

e ¼ n0 þ nadd
e .

Because of the presumed controlled nature of the polymer-
ization process no growing polymer chain is lost during the

p = 0 0 < p < 1 p = 1
Solution Polymer Solution Polymer Added Monomer
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Scheme 2. Stoichiometric balance during copolymerization and monomer

addition. np¼Number of polymerized moles of monomer (¼n1pþ n2p),

n0¼ number of moles of monomer present at the start of the reaction

(¼n10þ n20), nadd
e ¼ total amount of monomer added to the reaction mixture

from the start ( p¼ 0) until the end of the reaction ( p¼ 1), nin¼ n0þ nadd,

nin
e ¼ n0 þ nadd

e .
reaction, hence the degree of polymerization X is obtained
from the ratio of the polymerized moles of monomer np and
the number of moles of initiator nI. X is proportional to the
monomer conversion p with the proportionality constant being
the targeted length of the gradient block, Xe. Xe is calculated
from the present amounts of monomer and initiator (see Eq.
(3)); it is hence easy to see that the term dp/dX in Eq. (1)
equals 1/Xe.

The composition of the comonomer mixture f1 at an arbi-
trary monomer conversion p is defined as the molar fraction
of monomer 1 in the solution, f1¼ n1/n (cf. Scheme 2). The
drift of the monomer composition, df1/dp is calculated by
derivation of this equation with respect to p (Eq. (4)):

df1

dp
¼ d

dp

hn1

n

i
ð4Þ

The added amount of monomer is quantified by the param-
eter q, defined as the ratio of the total number of monomer
moles in the system at a certain monomer conversion p
(nin¼ n0þ nadd) and the maximum amount of monomer
units present in the reaction system at the end of the reaction,
nin

e (Eq. (5)). At the start of the reaction q( p¼ 0)¼ q0¼ 1/2.

q¼ nin

nin
e

� 1 ð5Þ

To evaluate Eq. (4) one needs to take into account that
dnp=dp ¼ nin

e . For the sake of convenience, the function
a1( p) will be introduced, describing the instantaneous molar
fraction of added monomer 1 in the added monomer mixture:

a1 ¼
dnadd

1

dnadd
¼ dnadd

1 =dp

dnadd=dp
ð6Þ

With these abbreviations one obtains Eq. (7) (cf. Appendix A),
relating df1/dp to monomer conversion p and the monomer
addition functions q and a1:

df1

dp
¼ 1

q� p

�
f1�F1þ

dq

dp
ða1� f1Þ

�
ð7Þ

Note that in case of no monomer addition (q¼ 1, dq/dp¼ 0,
a1¼ 0), Eq. (6) reduces to the well-known Skeist Equation [18].
Inserting Eqs. (3) and (7) in Eq. (1) allows to calculate the local
copolymers’ compositional gradient dF1/dX (cf. Eq. (8)).

dF1

dX
¼ 1

Xe

dF1

df1

1

q� p

�
f1 �F1þXe

dq

dX
ða1� f1Þ

�
ð8Þ

So far the relation between monomer and copolymer com-
position as functions of the monomer conversion p and the
monomer addition q has been mentioned.

In case that no on-line analytic system is available, that
allows to continuously monitor the monomer conversions, the
monomer addition must follow a time-dependent scheme. For
practical experiments of this kind the time dependencies of
the monomer addition functions, dq/dt and a1(t) are required.
The conversion/time dependency is easily derived from the
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formal reaction kinetics of controlled copolymerizations. The
rate of monomer conversion is proportional to the number of
non-converted monomer moles n as well as the number of ini-
tiator molecules nI in the solution [21,22]. Since nI remains con-
stant it will be included in the effective kinetic rate constant
k( f1)¼ k( f1)nI. Note that the effective rate constant k( f1) will
depend on the monomer mixture composition f1, hence the
function k( f1) must be determined experimentally prior to
the preparation of gradient block copolymers. The overall
change of monomer in the reaction system is given by Eq. (9)

dn

dt
¼�kð f1Þnþ

dnadd

dt
ð9Þ

n¼ number of moles of non-converted monomer in the solu-
tion, nI¼ number of moles of initiator, nadd¼ number of
moles of monomer added to the solution, f1¼molar fraction of
monomer 1 in the solution, k( f1)¼ k( f1)nI¼ effective kinetic
rate constant.

Taking into account that dnadd/dt ¼ dnin/dt and n ¼
nin

e ðq� pÞ one obtains Eq. (10) that describes the change of
the monomer conversion with time (cf. Appendix B):

dp

dt
¼ kð f1Þðq� pÞ ð10Þ

p¼monomer conversion e Eq. (2), t¼ reaction time,
k( f1)¼ k( f1)nI¼ effective kinetic rate constant, f1¼molar
fraction of monomer 1 in the solution, q¼monomer addition
function e Eq. (5).

Since dq/dp¼ dq/dt$dt/dp, Eqs. (7), (8) and (10) form a
system of differential equations that allows to calculate the
compositional gradients ½dF1=dX�XðpÞ of the copolymer for
any given monomer addition program q(t) and a1(t).

Note that the calculated addition program requires the
kinetics of controlled or living copolymerizations to be valid.
The presence of induction periods or the observation of
retardation effects is indicative for deviations from the ideal
kinetics. In such a case the simultaneous start as well as the
simultaneous growth of all nI0 polymer chains must be put
in question and the use of this monomer addition scheme
cannot be recommended to generate gradient blocks.

By investigation of the equation system it can be shown that
time-linear addition programs (the ‘‘spontaneous gradient’’
polymerization technique can be considered as the limiting
case of no monomer addition) cannot result in constant gradi-
ent copolymers. Even in the very simple case of ideal statistic
copolymerization (r1¼ r2¼ 1: f1¼ F1, dF1/df1¼ 1), addition
of monomer 2 only (a1¼ 0) and the idealized condition that
the copolymerization rate constant k( f1) becomes independent
of the monomer composition f1 (k( f1)¼ k0), the targeted gradi-
ent F¼�1/Xe cannot be obtained.

Fig. 1 depicts the resulting local copolymer composition
F1(X ) along the polymer chain depending on the reduced
addition rate parameter j¼�2(XeF)/k0 (k0¼ rate constant of
copolymerization, F¼ targeted copolymer compositional
gradient). Without monomer addition ( j¼ 0) no gradient is
obtained because of the presumed ideal statistic nature of the
copolymerization. At X¼ 1/2$Xe monomer 1 is used up and
the copolymerization has to stop. With small addition rates
( j< 1) a low gradient is obtained at the start of the gradient
block that strongly increases until all monomer 1 is consumed.
However, although monomer 2 was added, monomer 1 is used
up before Xe is reached. An almost linear gradient is obtained
with j¼ 1, but the average gradient is about 2.2 times larger
than targeted value F¼�1. Hence, the gradient block will
only reach 44% of the planned length. This effect is caused
by the continuous decrease of the consumption rate of mono-
mer 1 (since monomer 1 is used up), while the molar number
of monomer 2 in the reaction mixture remains fairly constant
(because monomer 2 is constantly added). At a certain point e
that depends on the addition rate of monomer 2 e the remain-
ing monomer 1 is strongly diluted by monomer 2 and the ratio
of monomer 1:monomer 2 rapidly approaches to zero. At this
stage the copolymerization is effectively turned into the homo-
polymerization of monomer 2. The faster the monomer 2 is
added, the shorter the gradient block becomes.

Note that in real copolymerization experiments k( f1)¼
k0¼ constant is not found, hence there is little chance to obtain
perfectly controlled constant gradients by means of time-linear
monomer addition programs.

To fix the gradient dF1/dX at a constant value F, Eq. (8)
was resolved for dq/dp after inserting p¼ X/Xe to yield:

dq

dp
¼ XeF

F01

q� p

a1� f1

þF1� f1

a1� f1

ð11Þ

F¼ dF1/dX¼ targeted copolymer compositional gradient,
Xe¼ targeted length of the gradient block, F01 ¼ dF1=df1;
q¼ total monomer addition function, a1¼molar fraction of
monomer 1 in added monomer mixture, p¼monomer conver-
sion, F1¼ instantaneous molar fraction of monomer 1 in the
copolymer, f1¼ instantaneous molar fraction of monomer 1
in the monomer mixture.
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Fig. 1. Copolymer composition along the polymer chain obtained with time-

linear monomer addition programs (r1¼ r2¼ 1, k( f1)¼ k0, j¼�2(XeF)/k0,

dd: j¼ 0, e e e: j¼ 0.01, - - - -: j¼ 0.1, e$e$: j¼ 0.5, e$$e$$: j¼ 1, - - -

- -: j¼ 2, $$$$$$: j¼ 5, -$-$-$: j¼ 10).
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The differential equation system (DES) consisting of Eqs.
(7), (10) and (11) allows to calculate the monomer addition
functions for any arbitrary course of the gradient along the
polymer chain, since the gradient F is allowed to become
a function of the monomer conversion.

Note that in the limiting case of vanishing gradient (F¼ 0),
i.e. a constant copolymer composition, the differential equa-
tion system transforms into the well-known ‘‘continuous addi-
tion’’ equations (e.g. Ref. [23]) allowing to derive addition
programs that keep constant the rate of polymerization as
well as the number of monomer moles.

If the monomer conversion p can be measured online, the
explicit time dependence of q is not required and Eq. (10)
can be omitted from the DES. The resulting functions q( p)
and dq( p)/dp can be used to set-up a feedback loop that regu-
lates the monomer addition program accordingly. It is a large
advantage of this technique that the time consuming evalua-
tion of the effective rate constant function k( f1) can be
avoided. However, the availability of the respective apparative
equipment (i.e. on-line detectors coupled to a computer-
controlled addition system) is required.

Since many synthetic polymer chemistry laboratories lack
this equipment, the calculation of the time-dependent monomer
addition functions q(t) and dq(t)/dt offers the possibility to
prepare the gradient copolymers with low budget equipment.
To make use of the described method, the copolymerization
parameters and the effective copolymerization constant k( f1)
function must be obtained. This can easily be done by perform-
ing a series of low conversion (‘‘pilot’’) copolymerization
experiments with different comonomer compositions f1. For
each mixture the initial rate of polymerization Rp0 is measured
and k( f1) is obtained by division of Rp0 by the molar numbers
of monomers and the molar numbers of initiator [23,24]. From
the low conversion copolymer composition the copolymeriza-
tion parameters are obtained by means of least square fit
methods [25,26].

On performing the gradient copolymerization it is, how-
ever, strongly recommended to take samples from the reaction
mixture and check the reaction mixtures’ composition, or the
polymer composition offline. By means of this technique it is
possible to prove the quality of the obtained product by con-
structing the composition/conversion plot a posteriori.

The subsequent text will be focused on constant values of
the gradient, i.e. dF1/dX¼F. With dF1/dX¼F as the only
condition the problem is under-determined, because two
monomers can be added. One of the two addition rate func-
tions e e.g. a1 e must remain arbitrarily. In the subsequent
text three different auxiliary conditions will be mentioned,
namely (i) no addition of monomer 1, (ii) adjusting a constant
rate of polymerization and (iii) polymerization at a constant
number of moles of monomer.

2.1. Addition of monomer 2 only

The experimental situation mentioned here resembles the
semi-batch copolymerizations ‘‘Policy I’’ [20] in so far, that
only one monomer is fed to a polymerization mixture.
However, note that it is the aim of ‘‘Policy 1’’ to keep constant
the instantaneous molar fraction of monomer 1 in the mono-
mer mixture, while the creation of a gradient copolymer re-
quires a deliberate monomer compositional drift. In case that
only monomer 2 is added, a1 becomes zero and the differential
equation system reads:

dq

dp
¼�f1

XeF

F01
ðq� pÞ þ 1�F1

f1

ð12aÞ

df1

dp
¼ 1

q� p

�
f1�F1�

dq

dp
f1

�
ð12bÞ

dt

dp
¼ 1

kð f1Þ
1

q� p
ð12cÞ

F¼ dF1/dX¼ targeted copolymer compositional gradient,
Xe¼ targeted length of the gradient block, F01 ¼ dF1=df1,
q¼ total monomer addition function, a1¼molar fraction of
monomer 1 in added monomer mixture, p¼monomer conver-
sion, F1¼ instantaneous molar fraction of monomer 1 in the
copolymer, f1¼ instantaneous molar fraction of monomer 1
in the monomer mixture.

An analytical solution of the differential equation system
(12a)e(12c) was found for the case of an ideal statistic co-
polymerization (r1¼ r2¼ 1: F01 ¼ 1, f1¼ F1) on assuming
the copolymerization rate constant to depend linearly on the
composition of the monomer mixture:

kð f1Þ ¼ k2þ bf1 ð13Þ

k( f1)¼ rate constant of copolymerization at the monomer
composition f1, ki¼ rate constant of homopolymerization of
monomer i, b¼ k1�k2, f1¼molar fraction of monomer 1 in
the monomer mixture.

Together with the stoichiometric condition f1¼ 1þFp one
finds the conversion dependent monomer addition function q
to equal q¼ (1þp)/2. With this result, the time dependency
of the monomer conversion p as well as that of the monomer
addition function q was evaluated (Eqs. (14) and (15)). To
allow for a more general discussion, the dimensionless time
parameter t was introduced, relating the absolute rate of the
reaction to the time scale of the homopolymerization of mono-
mer 2 (see Eq. (16)).

p¼ ð1þ bÞexpð�t=2Þ
b expð�t=2Þ � ð1þ bÞ ð14Þ

q¼ 1

2

2
6641þ expð�t=2Þ � 1

b

1þ b
expð�t=2Þ � 1

3
775 ð15Þ

t¼ k2t ð16Þ

p¼monomer conversion e Eq. (2), b¼ k1�k2, ki¼ rate con-
stant of homopolymerization of monomer i, t¼ dimensionless
time parameter, q¼monomer addition function e Eq. (5).

Fig. 2 depicts the calculated results originating from the
analytical solution. Because of the assumed ideal random
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copolymerization the monomer addition function q( p) varies
linearly with p (Fig. 2a). The other plots show monomer con-
versions, as well as the required monomer additions in depen-
dence of the dimensionless time parameter t for the different
copolymerization rate constant/composition relations plotted
in Fig. 2b. Note that the functions q( p) and dq( p)/dp remain
of course independent of the reaction kinetics.

In all cases the monomer conversion increases linearly
with time for small reaction times (t/2< 0.25), but levels
off on approaching full conversion ( p / 1, see Fig. 2c).
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Fig. 2. (a) Monomer conversion dependence of the monomer addition function q and the addition rate dq( p)/dp for ideal random copolymerizations, (b) depen-

dence of the reduced copolymerization rate constant on the comonomer mixture composition f1 (Eq. (14)), (c) timeeconversion curve, (d) monomer additionetime

curve, (e) time dependence of the monomer addition rate dq/dt according to Eqs. (14)e(16), (r1¼ r2¼ 1, a1¼ 0, dd: b/k0¼ 0, e e e: b/k0¼ 0.5, $$$$$$:

b/k0¼ 1, e$e$: b/k0¼ 2, e$$e$$: b/k0¼ 5, $$$$$$: b/k0¼ 10).
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With increasing values of b e indicating how strongly k( f1)
depends on f1 e the monomer conversion grows faster in
time, as to be expected for systems of larger effective rate con-
stants. The same behaviour holds true for the amounts of
added monomer 2.

To fix the copolymers’ compositional gradient dF1/dX at
the required value F, monomer 2 must be added rapidly during
the initial stages of the reaction, but slowly in the later stages
(Fig. 2d). Fig. 2e depicts the time dependency of the monomer
addition rate, dq/dt, as obtained by time differentiation of
q(t) (Eq. (15)).

The stronger the change of k( f1) with f1, the more rapid
dq/dt must be decreased during the first stages of the copoly-
merization. However, even for b¼ 0, assuming the rate con-
stant to be independent of f1, the addition rate cannot be
constant in time. To obtain a constant gradient block copoly-
mer monomer 1 must be added with decreasing addition rates.

In case of a quadratic dependence of k( f1) on f1 (i.e. kð f1Þ ¼
k2 þ bf1 þ gf 2

1 ), the differential equations are still integrable,
however, the solution functions become impractically large
and tedious. Since general analytic solutions of differential
equation system (12a)e(12c) are hard to find, numeric solu-
tions were computed for selected systems by means of a 4th
order RungeeKutta algorithm [27].

Fig. 3 depicts a more realistic system assuming r1¼ 0.52
and r2¼ 0.46, similar to the copolymerization parameter of
styrene/methyl methacrylate. The monomer addition function
q( p) now becomes a non-linear curve and dq( p)/dp cannot
be kept constant (cf. Fig. 3a). Three different dependencies
of the copolymerization rate constant on f1 were considered,
namely (i) a linear dependence, (ii) a quadratic dependence
causing a maximum curve and (iii) an exponential behaviour
simulating k w constant for low values of f1 and a rapid
increase of k with monomer 1 e rich compositions (cf.
Fig. 3b). The effect of the variation of k with f1 is well illus-
trated in Fig. 3c, depicting the resulting timeeconversion
curves. System (iii) starts with a large rate constant at f1¼ 1,
causing a steep increase of the time conversion curve. On ex-
ceeding a conversion of p¼ 0.5 the rate constant k becomes
fairly independent of f1 and the slope of the respective time
conversion curve reduces (Fig. 3c, line://). It is interesting
to note that the rapidly growing rate constants in (i) and (ii)
demand the monomer addition rates to grow until conversions
of p¼ 0.25 (i: t w 0.1) and p¼ 0.5 (ii: t w 0.2) were reached.

In the later stages of the reaction, the rate increase caused
by the compositional dependence of the rate constant becomes
overcompensated by the reduction in available monomer con-
centration. Fig. 3e reveals that non-ideal copolymerization
systems will require rather complex timeemonomer addition
programs to generate perfect linear gradient blocks. In any
case, the experimental situation is finally described by a kind
of ‘‘starved feed’’ situation. The programs will be time con-
suming, because of the low rate of polymerization in the later
stages. However, such experiments can easily be performed
with the help of modern computer-controlled HPLC pumps as
well as by means of highly motivated experimentalists that
manually control the feed.
2.2. Constant rate condition

A second class of monomer addition programs makes use
of the possibility to add both the monomers simultaneously
to the reacting system, hence resembling the ‘‘Policy II’’
[20] of free radical copolymerization compositional control.
One interesting auxiliary condition is to add the monomers
in such a way that the total rate of polymerization remains
constant: dp/dt¼ p0. Under such circumstances the block
preparation will be ended in the finite time te¼ 1/p0. The
condition is introduced by equalling the time derivative of
Eq. (10) to 0 (Eqs. (17) and (18)).

d

dt

�
dp

dt

�
¼ dkðf1Þ

dt
ðq� pÞ þ kð f1Þ

�
dq

dt
� dp

dt

�
¼ 0 ð17Þ

dq

dt
¼ p0�

1

kð f1Þ
dkð f1Þ

df1

df1

dt
ðq�p0tÞ ð18Þ

p¼monomer conversion, q¼ total monomer addition func-
tion, t¼ reaction time, f1¼ instantaneous molar fraction of
monomer 1 in the monomer mixture, k( f1)¼ rate constant
of copolymerization at the monomer composition f1, p0¼
demanded constant rate of monomer consumption.

The change of the monomer mixture composition in time,
df1/dt, is restricted by the condition of a constant copolymer
composition gradient dF1/dX¼F:

df1

dt
¼ XeF

F01
p0 ð19Þ

f1¼ instantaneous molar fraction of monomer 1 in the mono-
mer mixture, t¼ reaction time, Xe¼ targeted length of the gra-
dient block, F¼ dF1/dX¼ targeted copolymer compositional
gradient, F01 ¼ dF1=df1; p0¼ demanded constant rate of mono-
mer consumption.

The integration of Eq. (19) yields Eq. (20), demonstrating
the linear change of the copolymer composition F1 in time.
This behaviour is required, since the demanded time linearity
of the monomer conversion p causes a time-linear growth of
the degree of polymerization X. As a consequence to obtain
a constant compositional gradient F, F1 has also to vary linear
in time.

F1 ¼ 1þXeFp0t ð20Þ

F1¼ instantaneous molar fraction of monomer 1 in the copoly-
mer, Xe¼ targeted length of the gradient block, F¼ dF1/dX¼
targeted copolymer compositional gradient, p0¼ demanded
constant rate of monomer consumption, t¼ reaction time.

Inserting Eq. (20) in Eq. (19) and considering that a con-
stant rate of conversion requires q� p¼ p0/k( f1), both addi-
tion functions dq/dt and a1 can be calculated (Eqs. (21) and
(22)):

dq

dt
¼ p0

(
1� 1

kð f1Þ2
dkð f1Þ

df1

XeF

F01

)
ð21Þ
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Fig. 3. (a) Monomer conversion dependence of the monomer addition function q and the addition rate dq( p)/dp for r1¼ 0.52, r2¼ 0.46, (b) assumed dependence of

the reduced copolymerization rate constant on the comonomer mixture composition f1, (c) timeeconversion curve, (d) monomer additionetime curve, (e) time

dependence of the monomer addition rate dq/dt according to DES (12a)e(12c), (r1¼ 0.52, r2¼ 0.46, a1 ¼ 0, dd: k( f1)/k0¼ 1þ 16$f1� 12.8$f1
2, e e e:

k( f1)/k0¼ 3exp( f 1
4)� 2, $$$$: k( f1)/k0¼ 1þ 5f1).
a1 ¼ f1þ

XeF

F01
þF1� f1

dq

dt

ð22Þ

F¼ dF1/dX¼ targeted copolymer compositional gradient, Xe¼
targeted length of the gradient block, p¼ dp/dt¼ targeted
rate of conversion, F01 ¼ dF1=df1; q¼ total monomer addition
function, a1¼molar fraction of monomer 1 in added monomer
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mixture, p¼monomer conversion, F1¼ instantaneous molar
fraction of monomer 1 in the copolymer, f1¼ instantaneous
molar fraction of monomer 1 in the monomer mixture,
k¼ copolymerization rate constant.

At a given temperature the targeted rate of monomer con-
version p0 can only be adjusted by means of the initial mono-
mer content q0 of the reaction mixture, since at the start of the
reaction p0¼ q0$k2 must hold true. However, this condition
does not allow large conversion rates: since the copolymer
compositional gradient F is of negative value (dF1/dX< 0)
it follows from Eq. (21) that dq/dt must always exceed the
rate of monomer conversion (dq/dt> p0) as long as p0 is not
zero. Hence, at a certain time te¼ (1� p0/k( f1e))/p0 all mono-
mer required to generate the gradient block is added, but non-
converted monomer is still present in the reaction system:
p(te)< 1. At this point the experimentalist loses control over
the copolymer composition, because further addition of mono-
mer is prohibited by the stoichiometric relations. Without mono-
mer addition the non-converted monomer will polymerize
‘‘free’’ to generate a ‘‘spontaneous’’ gradient. This behaviour
is illustrated in Fig. 4, depicting the time/monomer addition pro-
files for q0¼ p0/k2¼ 0.1 and q0¼ 0.01 in the model system
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Fig. 4. (a) ‘‘Constant rate’’ monomer addition profiles for q0¼ 0.1 (e e e),

q0¼ 0.01 (d) and q0 / 0 ($$$$) causing the compositional gradients depicted

in (b) (dd: q0¼ 0.1, $$$$: q0¼ 0.01).
r1¼ 0.52, r2¼ 0.46, k( f1)/k2¼ 1þ 3f1. For q0¼ 0.1 the mono-
mer addition must be stopped at a monomer conversion of
w73%. The resulting loss of control over the compositional
gradient is well visible in the respective copolymer composition
curve (Fig. 4b).

To achieve maximum control, the adjusted rate of monomer
conversion p0 must be as small as possible to minimize the
difference between monomer addition rate dq/dt and monomer
consumption p0. In the limiting case of low conversion rates
(p0� k( f1)) the monomer addition rate approaches the con-
version rate (dq/dt / p0) and the composition of the added
monomer mixture is identical to a1 / 1� p z 1�p0t (see
Fig. 4). Experimentally, this situation supposes to add ‘‘one
droplet’’ of a monomer mixture of the required composition
to a large volume of the polymerizing mixture and to wait until
this minor portion is completely consumed before the next
small portion is added. Such a monomer addition program
looks simple and straightforward; however, its time consump-
tion will be prohibitively large. For each added monomer
portion the experimentalist has to wait t*¼ 1/p0 for its
consumption.

With n addition steps the time consumption of this addition
program can be estimated to exceed the total time required for
first addition program described by Eq. (13) by a factor of n/3.
Furthermore, even with a low number of addition steps (e.g.
5e10) the required total reaction time may exceed the effec-
tive life time of the growing species.

Fig. 5 compares the time/addition rate profiles of both the
addition programs for the model system: r1¼ 0.52, r2¼ 0.46,
k( f1)¼ k2(1þ 3f1). The ‘‘add monomer 2 only’’ approach is
expected to produce the gradient block w50 times faster
than the ‘‘constant rate’’ method.

2.3. Constant mole number condition

Also monomer addition programs were investigated that
yield constant compositional gradients and simultaneously
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Fig. 5. Comparison of the monomer addition programs according to Eq. (13)

(d: dq/dt¼ dq2/dt, a1¼ 0, q0¼ q01¼ 0.5) and Eq. (22) (e e e: dq1/dt, e
$e$: dq2/dt, q0¼ 0.01, dp/dt¼ p0). r1¼ 0.52, r2¼ 0.46, k( f1)¼ k2(1þ 3f1).
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keep the number of moles of monomer constant during the re-
action time. Such a program should also cause the polymeriza-
tion to end in a finite period of time. It was, however, found
that no such programs exist, because the simultaneous intro-
duction of the conditions dF1/dX¼F and dn/dp¼ 0 leads to
equations that either demand negative monomer addition rates
or do not possess any solution (cf. Appendix C).

3. Summary

A differential equation system was derived that allows to
calculate the local compositional gradient dF1/dX along a
copolymer chain obtained by controlled copolymerization of
two monomers depending on the rate of monomer addition.

According to this set of equations true constant gradient
blocks cannot be obtained (i) without, or (ii) with time-linear
addition programs.

Two approaches were derived to adjust the compositional
gradient at a selected value F, namely the ‘‘add monomer 2
only’’ and the ‘‘constant rate’’ approach. With the first meth-
odology a polymerization is initiated in a mixture of nI moles
of a (macro)initiator and n10¼ nIXe/2 moles of monomer 1,
while nadd

2 ¼ nIXe=2 moles of monomer 2 are added during
the reaction time. The rate of reaction decreases in time, hence
the experimentalist has to stop the reaction on approaching
a desired degree of monomer conversion (cf. ‘‘starved feed’’
situations).

For the second method, the start mixture is composed of nI

moles of a (macro)initiator and n10� nIXe moles of mono-
mer 1. Subsequently, nadd

1 ¼ nIXe=2� n10 moles of monomer
1 and nadd

2 ¼ nIXe=2 moles of monomer 2 are added over a
finite period of time te in such a way that the added mixture
composition reflects the copolymer composition at the respec-
tive degree of conversion p¼ t/te and that the rate of monomer
conversion remains constant. In terms of time efficiency this
approach is expected to be inferior to that of the ‘‘add mono-
mer 2 only’’ technique.

Both addition programs require the knowledge of the copo-
lymerization diagram as well as the dependence of the effective
copolymerization rate constants k( f1) on the monomer mixture
composition. The required information is simply obtained
and the calculated time/monomer addition programs are easily
realized with modern computer-controlled equipment.

Appendix A. Derivation of the general monomer drift
equation

At an arbitrary monomer conversion p, n1p moles of mono-
mer 1 and n2p moles of monomer 2 have reacted and became in-
corporated in the copolymer. The solution must then consist of:

n1 ¼ n10þ nadd
1 � n1p moles of unreacted monomer 1 ðA1Þ

and

n2 ¼ n20þ nadd
2 � n2p moles of unreacted monomer 2: ðA2Þ
In total, n¼ n0þ nadd�np moles of monomer are present
in the solution, where n¼ n1þ n2, n0¼ n10þ n20 and np¼
n1pþ n2p. The molar fraction f1 of monomer 1 in the solution
is defined as f1¼ n1/(n1þ n2). The change of f1 with the mono-
mer conversion is given by:

df1

dp
¼ d

dp

hn1

n

i
ðA3aÞ

Insert Eqs. (A1) and (A2):

df1

dp
¼

d

dp

��
n10þ nadd

1 � n1p

	
�
n0 þ nadd� np

	
�
n0 þ nadd� np

	2

�
�
n10 þ nadd

1 � n1p

	�
n0 þ nadd� np

	
d

dp

�
n0þ nadd � np

	
�
n0þ nadd � np

	 ðA3bÞ

Take into account that dni0/dp¼ 0 and f1¼ðn10þ nadd
1 � n1p =Þ

ðn1 þ nadd � npÞ:

df1

dp
¼

dnadd
1

dp
� dn1p

dp

n0 þ nadd� np

� f1

dnadd

dp
� dnp

dp

n0þ nadd � np

ðA4Þ

The number of moles of polymerized monomer np is related
to the monomer conversion p:

np ¼
�
n0 þ nadd

e

	
p ðA5Þ

Hence, dnp=dp ¼ n0 þ nadd
e .

The change of the number of polymerized moles of mono-
mer 1, n1p with the monomer conversion is related to the in-
stantaneous composition of the copolymer, F1:

dn1p

dp
¼ F1

�
n0þ nadd

e

	
ðA6Þ

Inserting Eqs. (A5) and (A6) in (A4) yields:

df1

dp
¼

dnadd
1

dp
�F1

�
n0þ nadd

e

	
n0 þ nadd�

�
n0þ nadd

e

	
p
� f1

dnadd

dp
� n0 þ nadd

e

n0þ nadd �
�
n0 þ nadd

e

	
p

ðA7Þ

For the subsequent text the definition of the total amount of
monomer units (polymerized and non-reacted) that are present
in the system is introduced:

nin ¼ n0þ nadd ðA8Þ

nin
e ¼ n0þ nadd

e ðA9Þ

Here nin denotes the total amount of monomer that is present
in the system at a given conversion p, while nin

e stands for the
total amount of monomer in the system at the end of the reac-
tion ( p¼ 1).
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q¼ nin

nin
e

ðA10Þ

The quotient q� 1, called ‘‘monomer addition function’’
(Eq. (A10)) hence describes the fraction of monomer in the
system with respect to the total amount of monomer that
must be introduced to the system until the end of the reaction.
Inserting Eqs. (A8)e(A10) in Eq. (A7) yields:

df1

dp
¼ 1

q� p

�
f1 �F1þ

1

nin
e

�
dnadd

1

dp
� f1

dnadd

dp

��
ðA11Þ

Eq. (A11) contains the total monomer addition rate dnadd/
dp and the addition rate of monomer 1 ðdnadd

1 =dpÞ as variables.
To obtain a parameterized version of the equation, the function
a1 is introduced, describing the molar fraction of monomer 1
in the added monomer mixture:

a1 ¼
dnadd

1

dp

�
dnadd

dp
ðA12Þ

One reminds that 1=nin
e $dnadd

1 =dp ¼ dq=dp and that dnadd/
dp¼ dnin/dp (because of Eq. (A8)). Together with Eq. (A12)
one finally obtains the generalized monomer drift Eq. (A13):

df1

dp
¼ 1

q� p

�
f1 �F1þ

dq

dp
ða1� f1Þ

�
ðA13Þ

Two limiting cases of Eq. (A13) may be of interest:
(a) No addition of monomer 1: (a1¼ 0)

df1

dp
¼ 1

q� p

�
f1 �F1�

dq

dp
f1

�
ðA14Þ

(b) Ideal statistical copolymerization ( f1¼ F1) and no addi-
tion of monomer 1 (a1¼ 0)

df1

dp
¼� 1

q� p

dq

dp
f1 ðA15Þ

Appendix B. Derivation of the time dependence of the
monomer conversion, dp/dt

Consider a reaction vessel that contains n moles of mono-
mer. The total change of n with time is described by the formal
reaction kinetic Eq. (B1), where k( f1) denotes the effective re-
action rate constant and dnadd/dt the rate of monomer addition.

dn

dt
¼�kðf1Þnþ

dnadd

dt
ðB1Þ

Taking into account n¼ n0þ nadd� np (n0¼ number of
monomer moles present at the start of the reaction,
nadd¼ number of monomer moles added during the reaction
time t and np¼ number of polymerized moles of monomer)
yields:
dnadd

dt
� dnp

dt
¼�kðf1Þ

�
n0þ nadd � np

	
þ dnadd

dt
ðB2Þ

Removing dnadd/dt and dividing both sides of the equation
by nin

e , being the total number of moles of monomer units pres-
ent in the reaction vessel at the end of the reaction ( p¼ 1),
leads to:

� 1

nin
e

dnp

dt
¼�kðf1Þ

�
n0þ nadd

nin
e

� np

nin
e

�
ðB3Þ

After identifying the terms p ¼ np=nin
e (monomer conver-

sion) and q ¼ ðn0 þ nadd =nin
e

	
(monomer addition function)

one obtains the required time dependence of the monomer
conversion.

dp

dt
¼ kðf1Þðq� pÞ ðB4Þ

Appendix C. On the existence of monomer addition pro-
grams that keep the number of monomer moles constant
and yield constant gradient copolymers

A monomer addition program that generates constant gradi-
ent copolymers and keeps the number of moles of monomer in
the reaction vessel constant must fulfill two conditions:

(1)
dF1

dX
Xe ¼ 4¼ const:0

df1

dp
¼ 4

F01
5

df1

dt
¼ 4

F01

dp

dt�
df1

dt

�
ð1Þ
¼ 4

F01

dp

dt

Condition (1) requires a certain time dependency of the
monomer composition.

(2) n¼ const:¼ n0:
dn

dt
¼�kðf1Þnþ

dnadd

dt
¼ 0

dnadd

dt
¼ kðf1Þn0

��divide by nin
e ; nadd=nin

e ¼ q;n0=nin
e ¼ q0

dq

dt
¼ kðf1Þq0 jdq=dp¼dq=dt$dt=dp; dt=dp¼ðq�pÞ=kðf1Þ

dq=dp¼ q0=ðq�pÞ

Calculate df1/dp according to Condition (2):

df1

dp
¼ d

dp

�
n1

n1þn2

� ��n0¼n1þn2; n1¼n10þnadd
1 �n1p

df1

dp
¼� 1

n0

d

dp

�
n10þnadd

1 �n1p


 ��dn10=dp¼0; dnadd
1 =dp

¼dnin
1 =dp

df1

dp
¼ 1

n0

dnadd
1

dp
� 1

n0

dn1p

dp

��dn1p¼F1$dnp
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df1

dp
¼ 1

n0

dnin
1

dp
�F1

n0

dnp

dp

��nin
e =nin

e

df1

dp
¼ 1

q0

dq1

dp
�F1

q0

dp

dp
jdp=dp¼1;dq1=dp¼a1$dq=dp

df1

dp
¼a1

q0

dq

dp
�F1

q0

jdf1=dt¼df1=dp$dp=dt

�
df1

dt

�
ð2Þ
¼
�

a1

q0

dq

dp
�F1

q0

�
dp

dt

Condition (2) also requires a certain time dependence of
the monomer composition. Obviously, the time dependencies
df1/dt arising from conditions (1) and (2) must be identical:

�
df1

dt

�
ð2Þ
¼
�

a1

q0

dq

dp
�F1

q0

�
dp

dt
¼ 4

F01

dp

dt
¼
�

df1

dt

�
ð1Þ

Resolve for a1 and replace dq/dp by q0/(q� p):

a1¼
�

4

F01
þF1

q0

�
ðq�pÞ�0

Since a1 must not become negative, investigate under what
circumstances a1 can be larger than zero:

(a) ðq� pÞ > 0 for all times > 0 ðthe monomer conversion
cannot exceed the monomer additionÞ

(b)
4

F01
þF1

q0

�0
��q0F01;F

0
1¼dF1=dX; subtract 4q0

F1

dF1

dX
��4q0 jdX

F1dF1��4q0$dX jconsider : 4¼�1;q0¼1=2;

F1$dF1�
1

2
dX jIntegrate both sides; integration limits :

F1;0¼1; F1;Xe
¼0

ZF1;0¼0

F1;Xe¼1

F1$dF1�
1

2

ZXe

0

dX

1

2

�
12�02

	
�1

2
Xe01�Xe

This expression cannot be fulfilled for Xe> 1: the term
4=F01 þ F1=q0g


must hence always be of negative value.
The product 4=F01 þ F1=q0 ðq� pÞg


¼ a1 becomes negative

in all cases and so does a1. It must be concluded that there ex-
ists no possible mixture of monomer 1 and monomer 2 that
can be added to a polymerization mixture in such a way that
both conditions (n¼ constant and dF1/dX¼ constant) are
valid.
The considered monomer addition program cannot be
realized.

Appendix D. Source code of GRADDOS1.BAS

The program GRADDOS1.BAS allows to calculate a mono-
mer addition program q(t) and dq/dt(t) to obtain a pre-defined
course of the compositional gradient dF1/dp by numerical in-
tegration of the differential equation system (D1eD3) in the
limits of the monomer conversion p¼ p0 to p¼ pe:

dq

dp
¼XeF

F01

q�p

a1� f1

þF1� f1

a1� f1

ðD1Þ

df1

dp
¼ 1

q�p

�
f1�F1þ

dq

dp
ða1� f1Þ

�
ðD2Þ

dt

dp
¼ 1

kðf1Þðq�pÞ ðD3Þ

F¼ dF1/dX¼ targeted copolymer compositional gradient,
Xe¼ targeted length of the gradient block, F01 ¼ dF1=df1; q¼
total monomer addition function, a1¼molar fraction of
monomer 1 in added monomer mixture, p¼monomer conver-
sion, F1¼ instantaneous molar fraction of monomer 1 in the
copolymer, f1¼ instantaneous molar fraction of monomer 1
in the monomer mixture.

The user has to supply (1) the copolymerization parameters
r1 and r2, (2) the effective rate constant function k( f1), (3) the
function a1( p) (in case that monomer 1 should be added),
(4) the desired value e or function e of the compositional gra-
dient dF1/dp and (5) the initial value of monomer present in the
system, q0. The implementation in the presented source text
deals with a hypothetical monomer system characterized by:

r1¼0:52; r2¼0:46; ðLines 54 and 55Þ

kðf1Þ¼1þ5$f1 ðLine 154Þ

The standard implementation assumes that a constant gradi-
ent from F1( p¼ 0)¼ 1 to F1( p¼ 1)¼ 0 is required and that
only monomer 2 is added:

a1¼0 ð¼ addition of monomer 2 onlyÞ ðLine 147Þ

g¼dF1=dp¼�1 ðLine 61Þ

q0¼1=2 ðLine 70Þ

In case where a more complex course of the gradient along
the polymer chain is required, the user may implement the
function dF1/dp( p) in FUNCTION grd( p) (Line 172) and
adjust q0 accordingly.

The instantaneous polymer composition is calculated in
FUNCTION Z1(f1) (Line 219) by means of the LewiseMayo
Equation (terminal model). More complex copolymerization
equations can be implemented here if necessary. The derivation
dF1/df1 was deliberately implemented in FUNCTION Z1p(f1)
(Line 229) in form of a numerical derivation to allow a simple
exchange of the applied copolymerization equation.
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The program saves the results of its calculations in an ASCII
file, file name and path can be adjusted as in Line 77. The number
of saved data points can be controlled by the value of the variable
dps in Line 76 (N¼ ( pe�p0)/dps). Any saving can be omitted by
setting the flag sve to 0 in Line 75.

To avoid numerical problems it is recommended not to
integrate to full monomer conversion, but to stop at p w
0.97e0.98. This limit can be set in Line 66, variable pe. It is
also recommended to perform the calculations in t-space in-
stead of the real time t. This is simply performed by dividing
the effective rate constant function k( f1) by the homopolymeri-
zation constant of monomer 2, i.e. k( f1)¼ 1 for f1¼ 0.

1 ’ Programm GRADDOS1.BAS
2 ’
3 ’ (c) Uwe Beginn, 30.11.2005
4 ’ Written in Microsoft QBasic 4.5
5 ’
6 ’ Programm to calculate the monomer

addition function of
7 ’ monomer 1 to generate a gradient

copolymer. Conditions:
8 ’
9 ’ - The effective rate constant of the

copolymerization k(f1)
10 ’ ¼ kp12(f1) * nI0 must be implemented in

function cp(f1).
11 ’
12 ’ - The copolymerisation parameter must

be known and given in
13 ’ the ‘‘system’’ definition part of the main

program. The
14 ’ function Z1(f1) contains the

copolymerisation equation
15 ’ (implemented equation: terminal model)
16 ’
17 ’ - Addition of Monomer 1: alpha1 ¼

Function(p)
18 ’ (implemented: alpha1 ¼ 0, i.e. dq/dt ¼

dq2/dt)
19 ’
20 ’ - Initial amount of Monomer 1 in batch:

q0 ¼ n10/ne ¼ 0.5
21 ’
22 ’ - Gradient Xe * dF1/dX ¼ g ¼ �1
23 ’ In Function grd(p) the gradient dF1/dX

can be defined
24 ’ as function of the monomer conversion

p: ATTENTION in
25 ’ case of g <> -1, q0 must be adapted to

the stoichiome-
26 ’ try of the planned gradient block).

27 ’

28 ’ - The rate of reaction decreases down to
zero, as well as

29 ’ the number of moles monomer 1 and 2.
30 ’
31 DECLARE FUNCTION DGLsyst (i!, x, Y)
32 DECLARE FUNCTION Z1 (f1)
33 DECLARE FUNCTION Z1p (f1)
34 DECLARE FUNCTION cp (f1)
35 DECLARE FUNCTION Alpha1 (p)
36 DECLARE FUNCTION grd (p)
37 ’
38 DECLARE SUB SolveDGLS (n, t0, TE, h1,

h1min, h1max, eps)
39 DECLARE SUB Plot (n, xmin, xmax, ymin,

ymax, Zstp, Zerr)
40 DECLARE SUB schirm (xbmin!, xbmax!,

ybmin!, ybmax!, backcol!, xmin!, xmax!,
ymin!, ymax!, nx!, ny!)

41 DECLARE SUB SaveIt (sve, n, p, Phi)
42 ’
43 COMMON SHARED t, n, g, r1, r2
44 COMMON SHARED xmin, xmax, ymin, ymax,

sve, psve, dps
45 ’
46 n ¼ 3: ’ number of differential equations
47 DIM SHARED Y(n), ya(n), y0(n), yf(n),

f(n), f0(n)
48 DIM SHARED d(n)
49 ’ ------------------------------------
50 ’
51 ’ System definition
52 ’
53 ’ - Copolymerisation parameter
54 r1 ¼ .52
55 r2 ¼ .46
56 ’
57 ’ - Effective copolymerisation rate

constant k(f1)
58 ’ must be defined in FUNCTION cp(f1)
59 ’
60 ’ - Desired gradient
61 g ¼ -1: ’ g ¼ dF1/dp
62 ’
63 ’
64 ’ - Initial conditions
65 p0 ¼ 0: ’ Initial monomer conversion
66 pe ¼ .98: ’ Final monomer conversion
67 ’
68 ’
69 ’
70 y0(1) ¼ .5: ’ y1(p ¼ 0) – q0
71 y0(2) ¼ 1: ’ y2(p ¼ 0) – f10
72 y0(3) ¼ 0: ’ y3(p ¼ 0) – t0
73 ’
74 ’
75 sve ¼ 1 ’ 1 ¼ save Table: tau, p, q, f1, dq/

dt, F1
76 dps ¼ .01 ’ every dps step
77 Pfad$ ¼ ‘‘C:\COPOGRAD\GRADDOS1.DAT’’ ’

default save path
78 ’
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79 ’
80 ’
81 ’------------------------------------
82 ’
83 ’ Integration control
84 ’
85 ep ¼ .00000001# ’ Error - Limit
86 h1 ¼ .00000001# ’ Start step width
87 h1min ¼ .00000001# ’ smallest allowed

step width
88 h1max¼ .0001 ’ largest allowed step witdh
89 ’------------------------------------
90 ’
91 ’ Programm
92 ’
93 PRINT
94 PRINT ‘‘ GRADDOS.BAS’’
95 PRINT
96 PRINT
97 PRINT ‘‘ System definition:’’
98 PRINT
99 PRINT ‘‘ r1 ¼ ’’; r1
100 PRINT ‘‘ r2 ¼ ’’; r2
101 PRINT
102 PRINT ‘‘ ------------ ----------------’’
103 PRINT ‘‘ f1 k(f1) p dF1/dp’’
104 PRINT ‘‘ ------------ ----------------’’
105 FOR f1 ¼ 0 TO 1 STEP .25
106 PRINT USING ‘‘ ###.#### ’’; f1;
107 PRINT USING ‘‘ ##.####^^^^ ’’; cp(f1);
108 PRINT USING ‘‘ ###.### ’’; f1;
109 PRINT USING ‘‘ ##.## ’’; grd(p)
110 NEXT f1
111 PRINT ‘‘ ------------ ----------------’’
112 PRINT
113 PRINT ‘‘ Calculation started’’
114 ’
115 ep1 ¼ ep
116 epn ¼ ep/n
117 IF sve ¼ 1 THEN
118 OPEN Pfad$ FOR OUTPUT AS #1
119 psve ¼ 0
120 END IF
121 ’
122 SolveDGLS n, p0, pe, h1, h1min, h1max,

epn
123 ’
124 PRINT ‘‘ Calculation finished’’
125 IF sve ¼ 1 THEN
126 PRINT #1, ‘‘t/k2’’, ‘‘p’’, ‘‘f1’’, ‘‘q’’, ‘‘dq/

dt’’, ‘‘F1’’
127 PRINT #1, ‘‘ ’’
128 PRINT #1, ‘‘GRADDOS1.BAS’’
129 PRINT #1, DATE$
130 PRINT #1, TIME$
131 PRINT #1, ‘‘r1 ¼ ’’; r1
132 PRINT #1, ‘‘r2 ¼ ’’; r2
133 PRINT #1, ‘‘kp(f1) ¼ 3*exp(f1^4)-2’’
134 PRINT #1, ‘‘dF1/dX ¼ -1’’
135 PRINT #1, ‘‘---END---’’
136 CLOSE #1
137 PRINT
138 PRINT ‘‘ tau, p, f1, q, dq/dt, F1 - Table

saved in:’’
139 PRINT ‘‘ ’’; Pfad$
140 END IF
141 END
142 ’ Define fraction of monomer 1 in
143 ’ feed solution as function of the
144 ’ monomer conversion p. Default:
145 ’ alpha1 ¼ 0
146 FUNCTION Alpha1 (p)
147 Alpha1 ¼ 0
148 END FUNCTION
149 ’ Define effective copolymerisation
150 ’ rate constant as function of the
151 ’ molar fraction of monomer 1 in
152 ’ the reaction mixture (f1).
153 FUNCTION cp (f1)
154 cp ¼ 1 þ 5 * f1
155 END FUNCTION
156 FUNCTION DGLsyst (i, x, Y)
157 xf ¼ x ’x ¼ monomer conversion p
158 yf(i) ¼ Y
159 SELECT CASE i <¼ n
160 CASE i ¼ 1
161 f(1) ¼ -g/(yf(2) * Z1p(yf(2))) * (yf(1) -

xf) þ 1 - Z1(yf(2))/yf(2)
162 CASE i ¼ 2
163 f(2)¼ 1/(yf(1) - xf) * (yf(2) - Z1(yf(2))þ

f(1) * (Alpha1(xf) - yf(2)))
164 CASE i ¼ 3
165 f(3) ¼ 1/(yf(1) - xf)/cp(yf(2))
166 END SELECT
167 DGLsyst ¼ f(i)
168 END FUNCTION
169 ’ Define the gradient Xe*dF1/dX
170 ’ ¼ dF1/dp as function of the
171 ’ monomer conversion p. Default:
172 ’ dF1/dx ¼ constant ¼ g,
173 ’ default g: -1
174 FUNCTION grd (p)
175 grd ¼ g
176 END FUNCTION
177 SUB SaveIt (sve, n, p, Phi)
178 IF sve ¼ 1 THEN
179 IF p > ¼ psve THEN
180 psve ¼ psve þ dps
181 PRINT #1, Y(3), p, Y(2), Y(1), f(1)/f(3),

Z1(Y(2))
182 ’ t p f1 q dq/dt, F1
183 END IF
184 END IF
185 END SUB
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186 SUB SolveDGLS (n, p0, pe, h1, h1min,
h1max, eps)

187 DIM c1(n), c2(n), c3(n), c4(n)
188 FOR i ¼ 1 TO n
189 Y(i) ¼ y0(i)
190 f(i) ¼ f0(i)
191 NEXT i
192 ep ¼ eps * n
193 p ¼ p0
194 DO
195 h2 ¼ h1/2
196 dn ¼ 0
197 FOR i ¼ 1 TO n: yf(i) ¼ Y(i): NEXT i
198 FOR i ¼ 1 TO n
199 x ¼ p: Y ¼ Y(i): c1(i) ¼ DGLsyst(i, x, Y)
200 x ¼ p þ h2: Y ¼ Y(i) þ h2 * c1(i): c2(i) ¼

DGLsyst(i, x, Y)
201 x ¼ p þ h2: Y ¼ Y(i) þ h2 * c2(i): c3(i) ¼

DGLsyst(i, x, Y)
202 x ¼ p þ h1: Y ¼ Y(i) þ h1 * c3(i): c4(i) ¼

DGLsyst(i, x, Y)
203 ya(i) ¼ Y(i)
204 Y(i) ¼ Y(i) þ h1 * (c1(i) þ 2 * c2(i) þ 2 *

c3(i) þ c4(i))/6
205 d(i) ¼ ABS(h1 * (-c1(i) - c2(i) þ 2 *

c3(i))/3/n)
206 dn ¼ dn þ d(i)
207 NEXT i
208 p ¼ p þ h1
209 IF dn > eps THEN h1 ¼ h1 * .9
210 IF dn < eps THEN h1 ¼ h1/.9
211 IF h1 < h1min THEN h1 ¼ h1min
212 IF h1 > h1max THEN h1 ¼ h1max
213 SaveIt sve, n, p þ h1, Phi
214 LOOP UNTIL p > pe
215 END SUB
216 ’ Implementation of the copolymerisation
217 ’ equation. Default: Lewis-Mayo equation
218 ’ (¼ terminal model)
219 FUNCTION Z1 (f1)
220 f2 ¼ 1 - f1
221 f12 ¼ f1 * f2
222 zz ¼ r1 * f1 ^ 2 þ f12
223 zn ¼ r2 * f2 ^ 2 þ f12
224 Z1 ¼ zz/(zz þ zn)
225 END FUNCTION
226 ’ Numerical calculation of the term
227 ’ F1 0 ¼ dF1/df1. Can be replaced by
228 ’ an analytical expression.
229 FUNCTION Z1p (f1)
230 fa ¼ f1 þ .00005
231 fb ¼ f1 - .00005
232 za ¼ Z1(fa)
233 zb ¼ Z1(fb)
234 Z1p ¼ (za - zb)/.0001
235 END FUNCTION
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